Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Clonal Saplings of Trembling Aspen Do Not Coordinate Defense Induction.

Identifieur interne : 000F92 ( Main/Exploration ); précédent : 000F91; suivant : 000F93

Clonal Saplings of Trembling Aspen Do Not Coordinate Defense Induction.

Auteurs : Olivia L. Cope [États-Unis] ; Richard L. Lindroth [États-Unis]

Source :

RBID : pubmed:30109458

Descripteurs français

English descriptors

Abstract

Induction of plant chemical defenses in response to insect feeding may be localized to the site of damage or expressed systemically, mediated by signal transduction throughout the plant. Such systemic induction processes have been widely investigated in plants with single stems, but rarely in clonal plants comprised of multiple ramets with vascular connections. For a clonal tree species such as trembling aspen (Populus tremuloides Michx), integration of induced defense within clones could be adaptive, as clones are spatially extensive and susceptible to outbreak herbivores. We used pairs of aspen saplings with shared roots, replicated from three genotypes, to determine whether defense-induction signals are communicated within clones. One ramet in each pair was subjected to a damage treatment (feeding by Lymantria dispar, followed by mechanical damage), and subsequent changes in leaf defensive chemistry were measured in both ramets. Responses to damage varied by defense type: condensed tannins (CTs) increased in damaged ramets but not in connected undamaged ramets, whereas salicinoid phenolic glycosides (SPGs) were not induced in any ramets. Genotypes varied in their levels of CTs, but not in their levels of SPGs, and responded similarly to damage treatment. These results suggest that, even with both vascular and volatile information available, young aspen ramets do not induce defenses based on signals or metabolites from other ramets. Thus, unlike other clonal plant species, aspen do not appear to coordinate defense induction within clones. Lack of coordinated early induction in aspen may be related to the function of CTs in tolerance, rather than resistance.

DOI: 10.1007/s10886-018-1006-5
PubMed: 30109458


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Clonal Saplings of Trembling Aspen Do Not Coordinate Defense Induction.</title>
<author>
<name sortKey="Cope, Olivia L" sort="Cope, Olivia L" uniqKey="Cope O" first="Olivia L" last="Cope">Olivia L. Cope</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA. ocope@wisc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30109458</idno>
<idno type="pmid">30109458</idno>
<idno type="doi">10.1007/s10886-018-1006-5</idno>
<idno type="wicri:Area/Main/Corpus">000D06</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D06</idno>
<idno type="wicri:Area/Main/Curation">000D06</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D06</idno>
<idno type="wicri:Area/Main/Exploration">000D06</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Clonal Saplings of Trembling Aspen Do Not Coordinate Defense Induction.</title>
<author>
<name sortKey="Cope, Olivia L" sort="Cope, Olivia L" uniqKey="Cope O" first="Olivia L" last="Cope">Olivia L. Cope</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA. ocope@wisc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706</wicri:regionArea>
<wicri:noRegion>53706</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of chemical ecology</title>
<idno type="eISSN">1573-1561</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Chromatography, High Pressure Liquid (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Glycosides (analysis)</term>
<term>Glycosides (metabolism)</term>
<term>Herbivory (MeSH)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Moths (growth & development)</term>
<term>Moths (physiology)</term>
<term>Phenols (chemistry)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (parasitology)</term>
<term>Populus (chemistry)</term>
<term>Populus (genetics)</term>
<term>Populus (parasitology)</term>
<term>Tannins (analysis)</term>
<term>Tannins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Chromatographie en phase liquide à haute performance (MeSH)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (parasitologie)</term>
<term>Génotype (MeSH)</term>
<term>Herbivorie (MeSH)</term>
<term>Hétérosides (analyse)</term>
<term>Hétérosides (métabolisme)</term>
<term>Papillons de nuit (croissance et développement)</term>
<term>Papillons de nuit (physiologie)</term>
<term>Phénols (composition chimique)</term>
<term>Populus (composition chimique)</term>
<term>Populus (génétique)</term>
<term>Populus (parasitologie)</term>
<term>Spectrométrie de masse (MeSH)</term>
<term>Tanins (analyse)</term>
<term>Tanins (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Glycosides</term>
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Phenols</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glycosides</term>
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Hétérosides</term>
<term>Tanins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Phénols</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Papillons de nuit</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Moths</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Hétérosides</term>
<term>Tanins</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Papillons de nuit</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Moths</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chromatography, High Pressure Liquid</term>
<term>Genotype</term>
<term>Herbivory</term>
<term>Mass Spectrometry</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Chromatographie en phase liquide à haute performance</term>
<term>Génotype</term>
<term>Herbivorie</term>
<term>Spectrométrie de masse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Induction of plant chemical defenses in response to insect feeding may be localized to the site of damage or expressed systemically, mediated by signal transduction throughout the plant. Such systemic induction processes have been widely investigated in plants with single stems, but rarely in clonal plants comprised of multiple ramets with vascular connections. For a clonal tree species such as trembling aspen (Populus tremuloides Michx), integration of induced defense within clones could be adaptive, as clones are spatially extensive and susceptible to outbreak herbivores. We used pairs of aspen saplings with shared roots, replicated from three genotypes, to determine whether defense-induction signals are communicated within clones. One ramet in each pair was subjected to a damage treatment (feeding by Lymantria dispar, followed by mechanical damage), and subsequent changes in leaf defensive chemistry were measured in both ramets. Responses to damage varied by defense type: condensed tannins (CTs) increased in damaged ramets but not in connected undamaged ramets, whereas salicinoid phenolic glycosides (SPGs) were not induced in any ramets. Genotypes varied in their levels of CTs, but not in their levels of SPGs, and responded similarly to damage treatment. These results suggest that, even with both vascular and volatile information available, young aspen ramets do not induce defenses based on signals or metabolites from other ramets. Thus, unlike other clonal plant species, aspen do not appear to coordinate defense induction within clones. Lack of coordinated early induction in aspen may be related to the function of CTs in tolerance, rather than resistance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30109458</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-1561</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>44</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2018</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of chemical ecology</Title>
<ISOAbbreviation>J Chem Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Clonal Saplings of Trembling Aspen Do Not Coordinate Defense Induction.</ArticleTitle>
<Pagination>
<MedlinePgn>1045-1050</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10886-018-1006-5</ELocationID>
<Abstract>
<AbstractText>Induction of plant chemical defenses in response to insect feeding may be localized to the site of damage or expressed systemically, mediated by signal transduction throughout the plant. Such systemic induction processes have been widely investigated in plants with single stems, but rarely in clonal plants comprised of multiple ramets with vascular connections. For a clonal tree species such as trembling aspen (Populus tremuloides Michx), integration of induced defense within clones could be adaptive, as clones are spatially extensive and susceptible to outbreak herbivores. We used pairs of aspen saplings with shared roots, replicated from three genotypes, to determine whether defense-induction signals are communicated within clones. One ramet in each pair was subjected to a damage treatment (feeding by Lymantria dispar, followed by mechanical damage), and subsequent changes in leaf defensive chemistry were measured in both ramets. Responses to damage varied by defense type: condensed tannins (CTs) increased in damaged ramets but not in connected undamaged ramets, whereas salicinoid phenolic glycosides (SPGs) were not induced in any ramets. Genotypes varied in their levels of CTs, but not in their levels of SPGs, and responded similarly to damage treatment. These results suggest that, even with both vascular and volatile information available, young aspen ramets do not induce defenses based on signals or metabolites from other ramets. Thus, unlike other clonal plant species, aspen do not appear to coordinate defense induction within clones. Lack of coordinated early induction in aspen may be related to the function of CTs in tolerance, rather than resistance.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cope</LastName>
<ForeName>Olivia L</ForeName>
<Initials>OL</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-5559-8164</Identifier>
<AffiliationInfo>
<Affiliation>Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA. ocope@wisc.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lindroth</LastName>
<ForeName>Richard L</ForeName>
<Initials>RL</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>08</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Ecol</MedlineTA>
<NlmUniqueID>7505563</NlmUniqueID>
<ISSNLinking>0098-0331</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006027">Glycosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013634">Tannins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002851" MajorTopicYN="N">Chromatography, High Pressure Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006027" MajorTopicYN="N">Glycosides</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="N">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009036" MajorTopicYN="N">Moths</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013634" MajorTopicYN="N">Tannins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Clonal plants</Keyword>
<Keyword MajorTopicYN="N">Condensed tannins</Keyword>
<Keyword MajorTopicYN="N">Gypsy moth</Keyword>
<Keyword MajorTopicYN="N">Induction</Keyword>
<Keyword MajorTopicYN="N">Lymantria dispar</Keyword>
<Keyword MajorTopicYN="N">Phenolic glycosides</Keyword>
<Keyword MajorTopicYN="N">Populus tremuloides</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>06</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>08</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30109458</ArticleId>
<ArticleId IdType="doi">10.1007/s10886-018-1006-5</ArticleId>
<ArticleId IdType="pii">10.1007/s10886-018-1006-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2006;172(1):47-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Jun;13(6):264-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18487073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 May 1;12(3):512-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20522188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2015 Jul;41(7):651-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26099738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2007 Jun;10(6):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17498148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(2):410-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25952793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2006 Mar;147(3):461-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16333642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2005 Sep;145(2):298-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15959818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1989 Jun;15(6):1795-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Nov;32(11):1348-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23065192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Jul;27(7):1289-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2016 Jun;181(2):381-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26886130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2006 Jun;148(2):293-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16468055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2005 Oct;31(10):2231-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jun 30;7:770</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27446093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2017 Nov;40(11):2743-2753</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28755489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2017 Apr;43(4):327-338</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28280959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1999 Nov;14(11):443-447</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10511721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;179(4):1142-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18627496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Mar;88(3):729-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17503600</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Cope, Olivia L" sort="Cope, Olivia L" uniqKey="Cope O" first="Olivia L" last="Cope">Olivia L. Cope</name>
</noRegion>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F92 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F92 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30109458
   |texte=   Clonal Saplings of Trembling Aspen Do Not Coordinate Defense Induction.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30109458" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020